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1. Introduction. The classical noisy duel, say of 1 bullet vs 2,

with equal accuracy and a continuum of opportunities for firing, does not

have a saddle point. Remedies have included 1) "continuizing these ammuni-

tion stores ([12], [14]), 2) settling for only c-good solutions ([2], [il]).

and 3) placing certain extreme behavioral demands ([4]) on the weaker duelist.

calling for anticipating the opponent's current action, i.e., for instanta-

neously adapting his own firing plans to that action. A fourth possible

remedy, introduced in [15] and in a sense dual to the first, is to allow

only a finite set of firing opportunities, thus creating approximating

finite simultaneous games ([17]), which, as finite games of perfect recall

([13]), admit randomized behavioral solutions, i.e., solutions in the form

of firing time distributions. The asymptotic versions of these distribu-

tions model the anticipation required of the weaker duelist in [4].

A not uimpQrtant element of zero-sum two-person game theory is the

quantification (typically in stochastic fashion) of compelling not other-

wise quantified features of strategy; the quantification [19] of bluffing

in poker for example, by behavioral randomization calling for "irrational"

play now and then; or the quantification, by an atom of firing probability

reserved for the bitter end, of the KamikL.e ommitment of a value - less

single - salvo fighter in silent due> wit.- Itinuously firing opponent.

Still another example, then, is our modeling of the weaker duelist's

instantaneous anticipation by the fact that his asymptotic first-firing

distribution has infinite expectation and straddles that of his opponent.

It seems fair to say that this modeling will be of interest to the degree

that its details will not be predictable intuitively a priori, and in-

deed they do not seem to be. It does seem impossible to foretell, start-

ing only from knowing that the players' good strategies somehow are to

be asymptotically stochastically portrayed, whether the same normalization
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will work for both players, where the two asymptotic firing time distri-

butions will be situated with respect to one another, or whether I's need

to anticipate will be reflected in incomplete convergence in law of his

normalized firing time, beyond the infinite expectation of its asymptotic

distribution. What does turn out is given below in (1). Whether portions

of (1) are extrapolatable from r(l,2) to games of timing generally, we

do not as yet know, although we do know that they are soa extrapolatable

to r(m,n), as outlined in Section 6.

Consider then two equally accurate duelists, players I and .l, possess-

ing respectively I and 2 bullets, facing a finite grid, with uniform mesh

c, of joint firing opportunities, with the points of the grid calibrated

from 0 to 1 according to bullet lethality p. Dynamic programming yields

an optimal behavioral solution for each duelist, which, among other things,

specifies optimal.probablities, greater than zero and less than one, of

first firing (strictly speaking just "firing" in the case of I) at certain

contiguous grid points near p = 1/3. These probabilities are conditional

on neither duelist having yet fired, and may, for each duelist, be inter-

preted as determining an optimal unconditional distribution of time of

(first) fire near p - 1/3, say 4I,C for player I and 42, for

player II. Players I and II are to independently select the time of their

first shot, respectively according to 4l,E and h2,C' and to fire at the

time selected unless the opponent has fired before that time.

Though both #ijg and (P2,c converge to degeneracy at p = 1/3

with increasing numbers of firing opportunities, the microscopy of

location-scale norming (the same norming for (P,, and 42,) reveals

two asymptotic distributions on [-l,+-), say 41 and 42' with densities
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Figure 1. Asymptotic densities of times of (first) fire.
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As indicated in Section 5, relation (la) may be derived with the aid of

certain relatively weak hypotheses clearly indicated by extensive computer

runs; relations (lb), (1c) and (id) follow from certain strengthened ver-

sions of these hypotheses, allowing the expression (34) of 01 and (38)

of D2 in terms of certain Hermite equation solutions.

We submit that (la) and (lc) model I's need to anticipate by I's

asymptotic firing distribution "straddling" that of II,"and that this

need to anticipate is also modeled by the upper-tail mass of l's asymptotic

firing distribution, mass enough to cause (ld) (though not enoug;h to

prevent (lb)).

The next 4 sections detail the origins of the findings (1) concern-

ing ¢i and 42' together with the derivation of a certain associated

differential equation whose solution is discussed in [9). Section 6

indicates the extension bf che results to l'(m,n).

2. The dynamic programs. As pointed out in the introduction,

restricting firing opportunities to a finite grid -onverts the noisy

duel into a finite simultaneous game (cf. [17]). The successive infor-

mation sets of this simultaneous game corresponding to no one having

yet fired tell the story: They are the only non-trivial information

sets for the duel r(l,2) treated here. Since each player possesses

precisely one such information set per grid point, we shall speak below

of a player's behavior "at a grid point p", when we in fact mean to

speak of his behavior at the information set corresponding to that grid

point.

Assuming a uniform grid of meshl.t, at each of the successive grid
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points p 1, 1-c, 1-2e,...,O proceeding backwards from unity the

players face a 2x2 game with matrix

F F

(2a) F 0 1 when p = 1, and

F -1 0

F

(2b) F -(1-p) 2  2p-i when p < 1,

T. -p utp+ c

where u[p+C] is the value of the game at the grid point p+c (see

118]). Since 2p-l is never the minimum in its row for p > 0, the

game has a saddle point at (F,F) as long as p . p*, where p* Q 0.382

is the solution of. l-p*'= p .

At a grid point p < p*, one of three things can happen. There

may be a saddle point at (,F), i.e., -p > ujp+C] > 2p-l, which forces

p L 113.

Also, there are grids of arbitrarily small mesh for wh~ich some

grid point p < p* produces a saddle point at (F,F). For example,

if 6 > 0 and N is a positive integer such that

2N-1 > max(2(l-p*)/6, (1-p*)/(l-2p*)},

then the grid of mesh e - 2 (l-p*)/( 2N-l), which is less than 6,

produces a (F,F) saddle point when p - I-NE - p*-/2. It is shown

following (4) that, for given C, a JTF) saddle point can occur at

mL- ,,--



most ond grid point p.

The third possibility for a grid polnt p < p* is that the

corresponding game has no pure saddle point. As is shown in [181, the

value uip+cl determines the mixed value u(p] and the optimal

conditional firing probabilities xI(p] for I and x2 {p] for II:

(3a) u[p] -{ufp+c](1-p)2 + p(l-2p)}/{u[p+E] + p(l:p)},

(3b) x l[p] =tu[p+] + p)/{u[p+c] + p(l-p)),

(3c) x2 [p ]  {ufp+c] + 1-2p}/{ulp+6] + p(1-p)).

By inspection of the matrix (2b) of the game, we have in turn that

- (1-p)2 < -p, i.e., p 2 - 3p + I > 0, that ujp+E] - -p, and that

u[p+c] < 2p-l. The last inequality implies that the denominator in

each of the formulas (3) is less than -p 2 + 3p-l, which is negative.

Evidently, then, both. x [p] and x2 [p) are positive. Moreover, it

is straightforward to show that formulas (3) imply that

(4a) u(pI + p - (p2-3p+l) x [P],

(4b) u(pI + 1-2p - p 2 x 2 [p],

(4c) u(p+El - u[p] = (u(p+c] + p(l-p)} X1 1P] x 2 Ip],

all of which are negative.

In particular, ulp] < -p < -(p-e), so the game at the next grid

point p-c has no saddle point at (F,F). This implies that if, in

the backwards induction process, a (F,F) saddle point occurs for the

first time at a grid point p+e, where c < (p*-I/3)/2, then necessarily

p*- 4< p+c < p*. Also, if this happelis, then the game for the next grid
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point has the matrix (2b) with u[p+cl -(p+c), so it does not have

(FF) as a saddle point. This discussion shows that the (7,F) saddle

point phenomenon pan occur at most once for a given mesh c, either at

p* (if that happens to be a grid point) or at the first grid point less

than p*.

Hence, we can conclude that, for e small, there is a largest grid

point p(c) at which the game has no pure saddle point;' and that

p* - 2c < P(c) < p*. Starting at p(c) and continuing backwards, we

move through a succession of grid points p at which mixed opt-mal

strategies obtain. Since (4c) implies that u[p+cl] < u[p], the value of

the game increases as we proceed backwards. Moreover, the game at

p =p (c) + c has a pure saddle point at either (F,F) or (F,F). So,

the value u[p(c) + c] has one of the forms -(l-p) 2  or -p, and is

therefore greater-tan L1. It follows that we must eventually arrive

at a smallest grid point i(c) for which u[ (c) + el < 2P(c) - I, i.e.,

for which random strategies occur.

Finally,-the matrix (2b) for the game at p = P(c) - 6 has u[ (C)j

in the (F,F) entry, so it has a saddle point there. Proceeding induc-

tively backwards, then, the same situation holds for 0 < p < P(C).

The conditional firing probabilities xlEi(e)I,... ,x1[p(t)] deter-

mine the unconditional firing time distribution DlE of the introduction.

An analogous interpretation holds as well for the sequence x2E(C)1,....,x 2 [p(c)]

and the corresponding distribution (D The next sections discuss the

scaling of 4I,'. and 42,c' and consequent derivation of their asymptotic

counterparts PI and '?2"
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3. Asymptotic scaled values and probabilities of fire. For a

finite grid (1, 1-c, l-2e,...,O), let P(c) and (e), respectively,

be the smallest and largest grid points from Section 2 at which the

corresponding 2x2 game has no pure saddle point. Also, let f(k) = I/3-p(c),

let 0(c) - e/a(c) and, for t > -1, let p(t,c) be the largest grid

point that does not exceed 1/3 + t(c). This allows writing

(5a) p(-lC) = Me)

and, for t > -1,

(5b) p(t,C) = 1/3 + tO(C) + f(t,e),

where - c < f(t,e) < 0. We introduce the step-functions u(t,c) E u[p(t,c)],

XI(tc x1 [p(tc)], x2 (t,C) = x2[p(t,c)], and note that the definitions

of p(t,C) and- 04(t) imply that u(t + O(c),C) = u[p(t,c) + C] and

similarly for the other two functions evaluated at (t + 0(c),c).

Extensive computer implementations in [18] of the dynamic programs

of Section 2 point to the following hypotheses concerning 0(:) and

u(t,c):

HYPOTHESIS A. There is a positive number C such that

(6a) (() = C/ " + o(vr').

HYPOTHESIS B. There is a function v(t), differentiable for t > -1

and right-differentiable at t = -1, such that, if t > -1, then

(6b) u(t,c) - - 1/3 - v(t)O(c) + g(t,c),
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where for each t,g(t,e) = o(/C') and g(t+U(c),c) - g(t,c) = o(c).

A simple application of the definition of the derivative v(t) results in

(7) u(t+O(E),t) - u(t,E) = - v'(t)0 2 (C) + h(t,c),

where for each t, h(t,c) = o(c). We proceed to use results from Section

2 to derive a differential equation that v(t) must satisfy under Hypoth-

eses A and B.

First, for 't > -1, we can choose c sufficiently small so that the

2x2 game for the grid point p(t,t) has no pure saddle point, i.e., so

that P(c) < p(t,c) < p(c). This holds by definition when t = -1. For

t > -1, the inequality P(c) < 1/3 + ta(e) is equivalent to 0 < (l+t) (c)/Cr.

But this must hold for £ small, since Hypothesis A implies that as

C- 0 , (I+t)8(c)/v' (l+t)C, which is positive. Also, 1/3 + ta(c) - 1/3

while the inequalities p*-2c < p(E) < p* force p(L) - p* as u 0+,

so 1/3 + t (c) < p(e) for small c.

Hence, we can apply (4c) to (7), obtaining

(8) - v'(t) + h1(t,c)= [u(t+O(c),E) - u(t,E)]/0 2 (c) -
02(C)

- {u(t+0( ),c> + p(t ,)(1p(t1c))}
, ( t )  x2 (t,)

0(c) o(t)

The definition of 6(c), together with Hypothesis A and the fact that

h(t,e) = o(E), imply that h(t,C)/0 2 (c) 4 0 as c - 0 + . And relations

(5) and (6) imply that the expression in braces on the right side of (8)

approaches - 1/9 as c -P 0+.

Relations (4a) and (4b) can be us ed in conjunction with (6b) to
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calculate

(9) xi(t) =lim x (t,E )/0(c) for i 1,2.
, +0+

For, if we use (4a) we can write

(10) Xl(tC) (u(t,E)+I/3 p(tc)-1/3 [p2 (tC)-3p(tE)+1].

If we use relations (5) together with Hypotheses A and B, we obtain, as

C 0 ,

(11) x (t) = 9[v(t) - C 2 t].

Similarly, if we start from (4b), we get

(2 x 2 (t,c)-; rutt,C)+113 2(1/3-p(t,c))
(12) O(C) 0(c) + 0(c)

which, as e + 0+, yields

(13) x2 (t) = 9[v(t) + 2C
2t]. -

Returning to relation (8) with these results and letting c 0+, we find

that for, t > -1, v(t) must be a solution of the Riccati equation

(14) v'(t) = 1/9 xl(t) x2 (t) = 9[v(t)-C
2 t][v(t)+2C't].

We can obtain an initial condition for v(t) at t = -1 by

examining (12) with t = -1 or, what amounts to the same thing, (4b)

with p - P(C). Noting that 0(C) > 0 for c small (since O(c)//r- 1/C

as C 0+), we have from (4b) that
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(15) 0 > -P2(c)x2[(C)]/o(C) =(U[P(E)]+-2P(c))/6(c).

On the other hand, the definition of P(c) and consideration of the

2x2 matrix (21.) for p = P(c)-c shows that u[j(c)] > 2(p(c)-c) - 1.

Hence, the right member of (15) is not less than -2 ./0(c) =

which approaches 0 as C - 0+. Since P2 (c) - 1/9 as C - 0+, we

conclude that

(16) x2 (-l) = lim x2(-lC)/(E) 0.
C- -O+

By (13), this can be written as

(17) v(-1) = 2C 2.

Furthermore, the limit relations (9) together with the negativity
of the quantities~in (4a and (4b) imply that xl(t) > 0 and x2 (t) > 0

t > -1. Hence, (14) implies v'(t) > 0. Applying this to (13) gives

x(t) 18C 2 > 0. Hence, by (16),

(18) x2 (t) '
, 0 for t > -1.

To show that x (t) is strictly positive, suppose x I(t) 0 for

some to. Then (11) and (17) rule out t 0  -1. But if this were to

occur at some t0 > -1, then the fact that x1(t) > 0 for t > -1

would imply that x1 (t) would have a global minimum at an interior

point of its domain. So, x'(t o) - 0 which, by (11), says v'(t 0 ) = C2

But (14) with x1(tO) 0 0 says v'(t O) 0 0, a contradiction. Therefore,

(19) x1(t) > 0 fo, t > -1.
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This, cdupled with (11) and (12), gives

(20) x2(t) > 27C
2t for t > -1,

which is a stronger statement than (18) for t > 0.

J. C. Kegley has proved in [9] that, given any C > 0, there is a

unique solution of (14) that satisfies (19) for large values of t, and

that the solution exists for all t. Two forms of the sblution are given

in terms of the &eonfluent hypergeometric functions. One of the forms,

which will be used in Section 5, is

(21) v(t) C2, (s)

where 6 = C/272, s = 6t, and q'(s) is the solution of the Hermite

equa t ion-- _

(22a) "(s) - 2s P' (s) - 2/3 p(s) 0

that satisfies the initial conditions

(22b) W(O) = 1, 4'(0) = -2r(2/3)/r(1/6).

The second form of the solution is used to prove that condition (17)

then determines C uniquely, namely, C - Z //2, where z0  is the

zero of the Weber parabolic cylinder function D 2/3(z). A numerical

approximation of z0  furnished by R. J. l.amhert gives

(22c) C - 0.090637 ± 3lO- 6 .

This is in good agreement' with the vafie .09067 of C)(c()/vc- obtained
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-8for e - 1.5x10-8 the smallest of the c's underlying the computer

runs leading to Hypotheses A and B, and enhances the credibility of these

hypotheses.

4. Asymptotic distributions of first fire. Consider now, for

t > -1 and c small and positive, the probability l, (I/3+ (C)-t) E

1-0 l' (i/3+a(E).t ) that player I fires at or after the grid point

p(t,£) + e given, as always, that player II has not already fired., If

we denote by I(t,e) the collection of all grid points p with

P(e) < p < p(tc), where c is small enough so that P(E) < p(t.e) < p(C),

then we have, by independence of random moves under a behavioral strategy,

(23) l'C (i/3+fi(E).t) = H (l-x [p]).l'" pcI(t,c)

By analyzing the uatural .ogarithm of -1,(/3+(W(c)-t), we will show

that, as C 0+ ,  (I/3+ (c).t) tends to the limit

(24) l(t) E exp(- ftl xl(T)dT).

Thinking of t _ -1 as fixed, recall now that, as indicated above

following (Sb), xl(T,E)/O(c) is a step-function for - 1 < T < t, with

uniform step-size 0(e). Hence, we miy write

(25) E x[p] fti)xl(rc)/O(c)Idt,
pcI(t,c)

where t(c) < t < t(c) + O(C) by definition of p(t,e).

In order to show that, as c - 0+, x1 (1,L)/O(C) tends to xl(T)

uniformly for -1 < T < t, we invoke Hypothesis B. This hypothesis says
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that the tstep-functions (u(T,e) + 1/31/0(c) converge pointwise to

-v(r), which is assumed to be differentiable and, hence, continuous.

But (4c) and the fAct that 0(c) > 0 shows that for each e, the

corresponding step-function is a non-increasing function of T. By

a well-known theorem (see for example page 90 of [3]), it follows that

[u(T,C) + 1/31/0(c) converges uniformly to -v(T) on the compact

interval (-1,t].

Inspection ot relation (10) and the definition of p(tc) now

makes it clear that the step-functions x1(i,E)/0(c) converge utiformly

to x1 (T) on (-l,t], which, since t(c) + t as c - 0+, allows

concluding from (25) that

(26), F x l p ] -" ftx ()dr as c - 0 .

pcI(t,c)

We also note that, since 0(c) -) 0 as c 0+, the uniform convergence

of x (,c)/0(c) to x1() for -1 < x < t forces

+.
(27) sup x [p] - 0 as 0

pcI(t,e)

Now we examine

(28) log 0lC(1/3+ (O)t) + E xlip] E {log(l-x 1 pl])+Xlpl}.peI(t,c) pEI(t,C)

By Taylor's theorem,..we have log(l-xlip]) + xlI[p] - r(p), where

jr(p) i ( x [p]) 2/I2(1-XI[p) 2 . If we choose c small enough so that,

by (27), sup x1 [p) < 1-1/w/2, we find that Ir(p)I. (x1 (p])
2 for

pCl(tc) I.

prU(t,F). Therefore the right member of (28) has absolute value not

exceeding
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E (xlip])2 < sup xlip] • xl[p] ,pcI(t,c) pI(t C;) pEI(t,c)

which approaches 0 as c + 0+ by (26) and (27). By (26), then,

log (Dl,C(l/3+B(c).t) - t(i)d+ as c 0,

so 1,C (1/3+a(c).t) converges to 4) 1(t) as defined by (24).

Hence, 1,£./3+3(E).t) E 1 - 4) (l/3+,(c).t) tends, as c -.0

to a cdf Pl(t) = 1 - '(t) with hazard rate xI(t) (see for example

[1) for discus&ions of the concept of hazard rate in its usual context

of reliability theory), which we call I's asymptotic distribution of

time of (first) fire. Analogously, x2(t) is the hazard rate of II's

asymptotic distribution W2 (t) of time of first fire.

Henre, if TI, is Player I's time of (first) fire under mesh

c, (T -1/3)/M(c) is seen to converge i'- law to the cdf 4i with hazard

rate xI , and an entirely analogous argument and conclusion hold for

Player II. Normalization is by the location parameter 1/3 and the scale

parameter 8(c), the latter in effect stretching the shrinking interval

[ (c), 1/31 into the unit interval 1-1,0]. Of course, in view of

Theorem 2 (page 42) of (7], essentially no other normalization will

work.

Having obtained these results, we can now look back on their

derivations and see why Hypotheses A and B constitute an efficient set

of assumptions. We do this by attempting to alter Hypotheses A and B

to the natural alternative Hypotheses A', B' and 1) below, equally

plausible in the light of the compute, runs, and showing that we are
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driven 6ack to A and B.

To begin with, we now postulate, with 0(c) C/O(c) and

(C) = 1/3 -

HYPOTHESIS 3(E) - 0+  as E - 0+ , which implies that

p(t,c) - 1/3,

HYPOTHESIS B'. There exists a function v(t) on [-I,+ ) such

that (u(t,c) + 1/3)/6(c) has limit - v(t) as c - 0

and

HYPOTHESIS D. There exists a function xI(t) on [-1,+ ) such
that x1has limit x(t) 0

thxljtc)/u(C) 1XalCt)

Then (10) implies the existence of the limit, as c - 0+ , of

(p(tc) - 1/3)/0(c) on [-l,+-) , and the definition of p(t,c) then

+implies-the existence of the limit, say C, of (()//c as C -- 0
A

which in turn implies, by relation (12), the existence of the limit
x2(t) of x2(tc)/(E) oas - 0+

Now, if it were true that C 0, then (11) and (13) would say

xI(t) - 9v(t) = x2 (t) for all t -1. Furthermore, we could arrive

at the key relation (8) with the left member replaced by

- [v(t+0(C)) - v(t)/0(C) + [g(t+0(),c) - g(tc)1/02 (C),

and there seems to be no reasonable way to utilize this relation with-

out strengthening Hypothesis B' to Hypothesis B, in which case the

differential equation (14) becomes v'(t) = 9v2 (t), while the initial

condition (17) becomes v(-l) 0. But the only solution of this

initial value problem is' v(t) E 0. (rhat in turn forces xi(t) E 0,
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correspohding to no non-degenerate cdf's Di (t). This we are forced to

conclude that C > 0, which amounts to strengthening Hypothesis A' to

Hypothesis A.

5. Comparison of asymptotic distributions. Some relationships

between the cdf's 4) (t) can be derived under hypotheses weaker than

A and B. If we assume, again based on the pre-asymptotic computer runs,

that A holds but that B is weakened to:

B': For t > -i, irm u(t,)+1/3 v(t) exists,
0(c)

.-- -O+ ()vt eis,

then our derivations in Section 3 obtain the existence and non-negativity

of the limits x i(t) = Iim x i(t,c)/O(c), and also formulas (11) and (13)
i 40+

for, xi(t). From these formulas we can see that the hazard rates are

related by

(29) x2 (t) = x1 (t) + 27C
2t

In the derivation of the formulas

t
(30) (it) - exp(- flx i (-t)dT)

we needed A and

B": Hypothesis B' holds and v(t) is continuous.

Thus, under A and B", relations (29) and (30) give

(31) 0 2(t) = expt6
2 (1-t2 )] 4,.(t),

where S C/2T7T. This implies the comparisons
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(32) 40(t) > ID2(t) for -1 < t < I and P (t) < P2 (t) for t > 1,

which is to say that P2 is more highly concentrated about the normalized

firing time 1 than is i

Hypotheses A and B" also imply that the densities

tt(33) f (t) E- 4Tj(t) mxi(t) exp(- ft, x .(t)dT)

are defined and Aon-negative. However, it is not apparent that rigorous

analysis of these densities can be done without invoking the full force

of A and B. Since thete hypotheses eventually lead to formula (21) for

v(t), it is evident that the analysis of the densities depends critically

on the properties of the solutions P(s) of problem (22). For example,

formulas (11) and (21) imply that xl(t) = - lnj(s), hence that

(34) -

As is shown in [91, (s) > 0 for all s and O(s) - 0+ as

s - 6t o +o, so that f~ixI( )dt + , and, in view of (33),

(35) IlWtdt = 1;

this is to say that, even though I's asymptotic firing time distribution

is heavy-tailed compared to that of II, the convergence of I's normalized

firing time distribution is complete.

Relation (29) implies that frIx2(t)dt - +- also. Hence (33)

yields as well that f (t)dt - 1.

Inspection of figure 1, based onlthe computer runs, suggests the

!I
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results ihat

(36) (i) mode (09 = -1 and (ii) mode (02 > 0.

If both A and B hold, then the results of [91 can be used to establish

(i), based on (34) and the facts that P(s) is positive, decreasing,

and convex, and also to derive (ii) from a special relationship between

m(s) and the Weber parabolic cylinder functions D_ /3 and D2/3... In

particular, the differential equations analysis leads to an approximation

mode (D.) A 1.5058, furnished by R. J. Lambert, which, as figure'l suggests,

is in accordance with the computer runs.

No amount of inspection, however, will suggest that

(37) (1) mean (2) < and (ii) mean (4) O 9 .

Under A and B, we can use (31), (34), and the definition of 4 (t) to

get

(38) 2(t) = exp[6 2 (1-t 2 )1 i(s)/t(-6).

The facts that , is positive and decreasing force D2 (t) to be trapped

between 0 and exp(6 2(1-t2)], which,.leads to (37(1)). The Infinite

expectation for player I is established in (91, based on the fact that

1t (6t)/p(-5) behaves like t-I /3  as t - co

6. The m vs. n case. We conclude with a brief outline of how

results analogous to the above are obtained for the m vs. n equal-

accurbcy noisy duel, wherp m < n. TIa details of the derivations

S.......
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can be fbund in 19] and (10].

The analysis begins with the replacement of the matrix (2b) by

FF

F (l-p) 2 U ml,n-l[p+c] p + (1-p)uMl,1 (p+L]

F - p + (l-p)um,nllp+c] u m,nlp+c]

where u1 ([p+c] is the value of the i vs. j game at the grid point.

p+c. In particular, this value is 0 if i - j and is -1 if i = 0.

Hypotheses A and B are modified suitably, again based on computer

runs for some small values of m and n. Based on those hypotheses, we

can adapt the methods of Sections 3 and 4 above to derive the following

formulas for the asymptotic distributions D' and q) of the players'

normaliz-dd-times of first fire,

The cdf l(t) 4,(s)/'(so ), where s - 6(t+l) with 6 > 0, - n

is the value of t > -1 where the two players' hazard rates are equal

(which is zero in tile case 1 vs. 2), s = 6(-l+n), and is the solution

of the Hermite equation

- 2s4'(s) - 4a,(s) 0, a - m/2(m+n),

that satisfies the initial conditions

tP(0) - 1, 4"(O) -- 2r(a+-,)/r(a).

The cdf 45(2) - G(t) '2I(t), where G(t) - exp( 2 
- s 2 ).

Based on these formulas and the properties of the function

derived in (9], we find tlat
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lIct) > P2(t) for -1 < t < 1-2ri, 41(t) < e2(t) for t > 1-2ri

lir i(t) I

and that mode (I) - < - Y) < mode ( 2) while -1 < mean ( C2) < mean

with mean ((P) +. Thus, we have the inequalities (la) and (Ic)

for the m vs. n case while maintaining the weaker player's complete

convergence of normalized firing time, and infinite normalized firing

time expectation.
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